One way properties have been argued to acquire the syntactic (and semantic) status of predicates is via the contribution of main clause functional material directly above the domain of the property. *Deplicative adjunct predicates* (DPreds) do not seem to have the direct benefit of such elements, yet can still function as predicates, albeit predicates whose argument also plays another thematic role (Williams 1980/1985; Simpson 1983; Stowell 1983; Rapoport 1990, Rothstein 1985/2001; Bowers 1995, Larson 1989, Himmelmann & Schultze Berndt 2005, a.o.). For example:

(1) a. Jane ate dinner drunk. / b. Jane ate the corn raw. (subject- & object-oriented DPred, respectively)

We propose an analysis of depictive constructions in which the derivation of the various relations involved is both economical and precise, while also allowing a cross-linguistic applicability. Our Parallel Merge analysis adapts aspects of Rapoport’s (1999) 3-D ATB account, Irimia’s (2012) Complex Predicate and Multiple Agree, and You’s (2016) extension of Grafting.

Assumptions. The DPred structure is distinguished by the fact that it is assembled in parallel to the main independent clause, of which no element selects or requires it. The two structures are nonetheless fundamentally interrelated: the DPred is both predicated of a main-clause argument and event-related to the main-clause predicate—there is temporal overlap (Simpson 1983, Rapoport 1993, a.o.). These facts are responsible for the distinct mode of integration of the DPred with the main structure.

Merge at σ head. This integration is driven by the DPred head σ, a Situation/Stage head, containing time and place coordinates (unspecified in DPred when first merged), as shown in (2). We propose that the DPred AP must merge with σ in order to be linked to the main structure (as in den Dikken 2005). This σ-linking requires that the DPred be stage-level, deriving a basic property of this construction.

The DPred’s contingent nature is embodied in the σ head that drives the merge with the main clause: σ is unvalued for the Stage coordinates, and carries unvalued (φ, C) features that have been transmitted to it at the point of Merge with a.

Formal implementation. σ, in addition, functions as the locus of the type of Merge we propose: a Grafting operation (following van Riemsdijk 2006/2010; see also You 2016) that grafts the contingent head σ onto a σ head in the main clause, as shown for object-oriented DPreds in (2). (Linearization follows van Riemsdijk, with the added motivation of a locality constraint on the σ grafted head and grafted complement.) The implementation of all cross-structural relations is mediated by the fused head σ that results from Grafting.

A Stage head σ thus drives the fusion, is the locus of fusion, mediates integration, and defines the domain of all cross-structural relations. We suggest further that such a domain is required to constrain multiple thematic relations, as in the case here, in which an argument is thematically related to more
than one predicate. \(\sigma \) thus also defines the domain for DPred predication (and the related topic-focus relation). Given that the predication domain is established at \(\sigma \), it follows that only a DP local to \(\sigma \) can act as an argument for the DPred. Thus, raising of the object DP to Spec,\(\sigma \) is required. The raised DP must be of a type that can raise to escape incorporation with the verb. This obligatory non-incorporation is signalled by the distinctive marking we find on the object in depictive constructions: in Turkish, DOM is required irrespective of specificity (3a); while Romanian, like all Romance, forces the definite even on mass nouns (see especially Belletti 1988), and even with an indefinite interpretation (3b).

\[(3) \ a. \ Ali \ (bir) \ balıq-*{(i)} \ qış \ yer. \quad b. \ A \ băut \ lapte-*{(le)} \ rece. \]
\[
\text{‘Ali is eating/eats (the) fish raw.} \quad \text{‘S/he has drunk (the) milk cold.’}
\]

Our analysis thus predicts the exclusion as DPred arguments of some prepositional objects as well as other DPs that cannot raise or are otherwise unavailable.

Double object constructions. We derive the impossibility of DPreds oriented to the possessor in double-object constructions: *Mary gave Jane the book drunk*. We use the structure in (4), headed by a functional head (see Pylkkänen 2012, Harley and Jung 2015, a.o.), here Poss.

\[(4) \ Double-object construction \]

\[
\begin{array}{cccc}
V \quad & \text{PossP} \\
\quad & \text{IO, DAT} \\
& \text{Poss} [\text{DAT}] \\
& \text{DO} \\
\end{array}
\]

As standardly assumed, the functional head checks case (DAT, etc.) on IO, which is thus no longer available to the (case- and \(\varphi \)-agreeing) predicate; however, the unchecked DO is still available. The entire PossP structure raises to Spec,\(\sigma \) (see Runner 2001), \(\sigma \) checks case on DO, which can thus act as an argument for DPred: *Mary gave Jane the book used.*

Stage valuation and interactions. ANCHOR \(\sigma \) is the syntactic implementation of the Stage Topic (e.g. Erteschik-Shir 1997), the discourse element that specifies the spatio-temporal parameters of the sentence. This element is one of the permanently-available topics (in the sense of Erteschik-Shir; similar to Bianchi’s 2003 Logophoric Centre), others being speaker and addressee. This layer of discourse (\(\delta \)) heads is located on the highest left periphery following, for example, Speas &Tenny’s 2003 Speech Act layer, or Wiltschko’s 2014 Anchoring Projection. The lower \(\sigma \) position also matches proposals of other low \(\delta \) heads (Topic, Focus) by Belletti (2004), Jayaseelan (2000), Darlymple and Nikolaeva (2011). Anchor \(\sigma \) values any unvalued \(\sigma \) heads in a clause, here the fused (main and DPred) \(\sigma \). Thus, it follows that the adjunct cannot be interpreted as true of a different time/place than the main predicate. Another effect of valuation is the activation of \(\sigma \)’s discourse Case assigning capacity.

Since \(\sigma \) is related, both configurationally and conceptually, to other \(\delta \) elements, it would be expected to interact with them. And this is what we find illustrated by Russian case distinctions (see Bailyn 2001, Grebenyova 2005, Richardson 2007, a.o.), which demonstrate \(\sigma \)’s interaction with Speaker Perspective:

\[(5) \ a. \ Kakoj \ Ivan vernulsja iz puteshestvija? \quad b. \ Kakim \ Ivan vernulsja iz puteshestvija? \]
\[
\text{which-NOM Ivan returned from trip} \quad \text{which-INS Ivan returned from trip} \\
\text{‘How\textsubscript{NOM} did Ivan return from his trip?’} \quad \text{‘How\textsubscript{INS} did Ivan return from his trip?’} \\
\text{[OK in out-of-the blue situation; no expectation]} \quad \text{[well-defined perspective about Ivan’s state, given speaker’s knowledge of Ivan/trips]}
\]

The assumption of grafting implementation at \(\sigma \) (a discourse element), as opposed to other possible loci (such as Aspect), predicts the existence of such phenomena. Thus, our analysis has broader coverage than accounts involving situation-head merge (such as Keshet 2001, Percus 2010).

Conclusion. The analysis here employs a grafting mechanism for DPred integration into the main structure. The low \(\sigma \) locus of Merge allows the implementation of all cross-structural relations. The \(\sigma \)-led analysis explains a variety of properties exhibited by depictive constructions and provides insight into the composition of the Pred head/projection (Bowers 1995, Roy 2013) in certain contexts.