Colloque inaugural du GDR 1954 Phonologie:
«La position forte» (Nice, 24–25 juin 1999)

Consonantal lenition types in VC skeletons

Péter Dienes and Péter Szigetvári
Eötvös Loránd University, Budapest

handout and paper downloadable from http://budling.nytud.hu/~szigetva/papers.html
in this work Szigetvári was supported by the Research Support Scheme, CEU, grant no. 1687/320/1998

a. why do we usually have different types of lenition in different positions?
b. why do skeletal strings begin with an empty C (if they have empty CV at the beginning)?
c. why do they end with an empty V?
d. how are coda-onset clusters distinguished from bogus clusters?
e. how are long vowels/diphthongs distinguished from hiatus?
f. why is there no lenition before a stressed vowel?

(2) Lenition types

a. consonantal: debuccalization, devoicing... ([t] → [ʔ]; [s] → [h]; [d] → [t])
b. vocalic: vocalization/sonorization ([p] → [b]; [b] → [β]; [t] → [ɾ])

(3) Conventions

\(\mathcal{V} \): any vowel position \(\mathcal{C} \): any consonant position

\(\mathcal{V} \): vowel position associated with melody \(\mathcal{C} \): consonant position associated with melody

\(\mathcal{V} \): melodically empty vowel position \(\mathcal{C} \): melodically empty consonant position

(4) Primitives

a. vocaliness is inherently loud: \(\mathcal{V} \)s aim at being pronounced

b. consonantalness is inherently mute: \(\mathcal{C} \)s aim at remaining silent
 note: the prototypical \(\mathcal{C} \) is a stop, a brief period of silence, also cf. Dependency Phonology

c. supports the expression of the melodic elements of the target (cf. Goldsmith, 1990; Harris, 1994; Ségéral & Scheer, 1998, 1999)

d. destroys the inherent nature of the target (i.e. a \(\mathcal{C} \) becomes louder if governed, a \(\mathcal{V} \) loses its loudness if governed)

(5) Relations

a. The direction of GOVERNMENT and LICENSING is uniformly and universally right-to-left

b. LICENSING
 i. \(\mathcal{V} \)s are inherently licensed
 ii. a live \(\mathcal{V} \) licenses the preceding \(\mathcal{C} \) or may licence the preceding \(\mathcal{V} \) (through c)

c. GOVERNMENT
 i. a live \(\mathcal{V} \)
 a. does not govern into a completed foot, else
 β. it governs the preceding \(\mathcal{V} \) if available, else
 γ. it governs the preceding \(\mathcal{C} \)
ii. a C may govern the preceding C (through v)

iii. a governed v loses its inherent properties, i.e. its loudness as well as its inherent license: it becomes silent and it cannot license or govern—it is

iv. a governed C loses its inherent property, i.e. its muteness: it becomes louder, more sonorous—it undergoes vocalic lenition

d. : coda cluster (coda–onset), long vowel

i. a C can govern the preceding C through a v, which thus captured is and it remains silent, i.e. it is (just like a governed v)

ii. a V can license the preceding V through a c, which thus captured is buried

iii. burial is lexically determined

iv. a buried vowel may be governed under the usual conditions

v. coda clusters, long vowel

\[
\begin{array}{ccc|ccc|ccc}
\text{C} & \text{v} & \text{C} & \text{C} & \text{v} & \text{C} & \text{V} & \text{V} & \text{c} & \text{V} \\
\text{n} & \text{t} & \text{n} & \text{t} & \text{a} & \text{a} \\
\end{array}
\]

e. The Empty Category Principle (ECP)
An empty category loses its inherent properties iff governed and/or buried, i.e.,

i. v loses its inherent loudness, governing and licensing power iff governed and/or buried;

ii. c loses its inherent muteness iff governed and/or buried

(6) Types of C—types of lenition

<table>
<thead>
<tr>
<th>LICENSED</th>
<th>GOVERNED</th>
<th>LENITION TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>no</td>
<td>none</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>consonantal</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>vocalic</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
<td>vocalic and/or consonantal</td>
</tr>
</tbody>
</table>

a. Generalizations

i. C undergoes vocalic lenition

ii. C undergoes consonantal lenition

b. and C:
second in a bogus cluster or intervocalic coda cluster, word-initial

\[
\begin{array}{ccc}
\text{V} & \text{C} & \text{v} \\
\text{a} & \text{t} & \text{k} \\
\end{array}
\text{a} \text{a}
\]

c. and C:
first in a bogus cluster, word-final

\[
\begin{array}{ccc}
\text{V} & \text{C} & \text{v} \\
\text{a} & \text{t} & \text{k} \\
\text{a} \\
\end{array}
\text{a} \\
\]

d. and C:
intervocalic

\[
\begin{array}{ccc}
\text{V} & \text{C} \\
\text{a} & \text{t} & \text{a} \\
\end{array}
\]

e. and C:
first in a coda-cluster, within long vowel

\[
\begin{array}{ccc}
\text{V} & \text{C} & \text{v} \\
\text{a} & \text{n} & \text{t} \\
\text{a} \\
\end{array}
\text{a} \\
\]

\[
\begin{array}{ccc}
\text{V} & \text{C} & \text{v} \\
\text{a} & \text{n} & \text{t} \\
\text{a} \\
\end{array}
\text{a} \\
\]

\[
\begin{array}{ccc}
\text{V} & \text{C} & \text{v} \\
\text{a} & \text{n} & \text{t} \\
\text{a} \\
\end{array}
\text{a} \\
\]

\[
\begin{array}{ccc}
\text{V} & \text{C} & \text{v} \\
\text{a} & \text{n} & \text{t} \\
\text{a} \\
\end{array}
\text{a} \\
\]

\[
\begin{array}{ccc}
\text{V} & \text{C} & \text{v} \\
\text{a} & \text{n} & \text{t} \\
\text{a} \\
\end{array}
\text{a} \\
\]
(7) Claim: **The phonological skeleton is made up of VC units.**

a. At word edges
 i. Ségeral & Scheer's word-final vs are totally inert: they neither license nor govern
 ii. the situation that word-final v is licensed to remain silent by the word-boundary is strange and lacks satisfactory explanation
 iii. alleged word-final vs are different from word-medial vs: e.g., they have to be treated differently for Charette (1992)'s license to govern
 iv. the cs in Lowenstamm (to appear)'s word-initial empty cvs are functionless, only word-initial vs are needed
 v. allowing empty cv units in a CV-theory raises the problem of the proliferation of such units (also cf. below)

b. Within the word
 i. Licensing is the glue that cements the skeleton: Vs license Cs at unit boundaries, Cs do not license Vs because this is unnecessary, they are in the same skeletal unit
 ii. Closed syllable shortening: a skeletal unit cannot simultaneously belong to two burial domains (the two burial domains are okay the other way around; units are linked)

 $\begin{align*}
 V - c & \rightarrow V - C - v - C \\
 a & \quad n & \quad t & \quad | & \quad | & \quad | & \quad |
 \end{align*}$

 $\begin{align*}
 v - C & \rightarrow C - v - C & \rightarrow V - c \\
 n & \quad t & \quad a & \quad | & \quad | & \quad | & \quad |
 \end{align*}$

 iii. Comes handy in explaining nonlenition foot-initially (q.v. below)

c. CV...CV as the unmarked skeleton

 Languages prefer to mark the word boundary by a , i.e., by a vC unit on left and by a Vc on the right. Word-initial v is governed (therefore silent), word-final c is ungoverned (therefore not forced not to be silent).

(8) The minimal word

a. CV formulation: Any content word contains at least three CV units (with the word-initial empty one).

b. VC formulation: Any content word contains a nonperipheral unit.
 i. a V or C word is subminimal: only a peripheral unit, Vc or vC
 ii. a CV word is subminimal: only two peripheral units, vC-Vc
 iii. a VC word is ok: Vc
 iv. a CVV word is ok: vC-Vc-Vc
 v. a VV word is ok: Vc-Vc
 vi. a CVC word is ok: vC-Vc

(9) Phonotactics: codas clusters and bogus clusters are different

a. *#rt, *#tn: word initially none of them is allowed
b. rt# vs. *tn #: word finally coda clusters are okay, bogus clusters are not
c. *Vrt, Vtn: closed syllable shortening only before coda clusters
d. *arnta: no adjacent coda clusters (one skeletal unit cannot belong to two burial domains)
e. *atkn:a: no adjacent bogus clusters (governed v cannot govern)
f. *atnta: no bugus cluster followed by coda cluster (buried v cannot govern)
g. arnta: coda cluster+bogus cluster is the only possible type of CCC cluster
(10) Empty skeletal positions

a. An empty position is one that is not lexically linked to any melodic material, i.e., the second position in a long vowel, the first in a geminate consonant are *not* empty.
b. Empty skeletal units are not allowed: *vc (cf. Gussmann & Kaye (1993)’s Reduction; but for them it is arbitrary).
c. Adjacent empty c and v are possible but not readily detectable.

(11) The absence of intervocalic lenition

a. Proposal: it is not possible to govern into a completed foot
 i. an instantiation of the Strict Cyclicity Condition
 ii. works only if the skeleton has VC units
 iii. foot-initial nonlenition is in fact foot-final
b. Predictions
 i. no syncope before stressed V: cf. séparâte vs. *séparâte
 ii. no bogus cluster before stressed V: very few counterexamples (e.g., athléïc, pragmâtic)
 iii. unfilled hiatus is more preferable before a stressed than before an unstressed V (is this so? or is hiatus filling not phonology’s business?)

(12) Summary

a. We define what vocalicness and consonantalness mean.
b. We elaborate on the meaning of government and licensing.
c. We account for different lenition types at different sites.
d. We claim that the skeleton is made up of VC units, not CVs.
e. We explain the different behaviour of coda clusters and bogus clusters.
f. We distinguish long vowels/diphthongs and hiatus.
g. We explain closed syllable shortening.
h. We propose a solution to the problem of foot-initial nonlenition.

References

