Vacillation and lexical variation in Hungarian front/back harmony

Péter Rebrus – Péter Szigetvári – Miklós Törkenczy

Research Institute for Linguistics & Eötvös Loránd University (ELTE), Budapest
rebrus, tork)@nytud.hu, szigetvari@elte.hu

* This work has been supported by NKFI #11863 “Experimental and theoretical investigation of vowel harmony patterns”

1 front/back harmony (HBH)
- stem-controlled suffix harmony

<table>
<thead>
<tr>
<th>front (F)</th>
<th>back (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>neutral (N)</td>
<td>round (R)</td>
</tr>
<tr>
<td>high</td>
<td>i, i</td>
</tr>
<tr>
<td>mid</td>
<td>e, e</td>
</tr>
<tr>
<td>low</td>
<td>o, o</td>
</tr>
</tbody>
</table>

Lexical variation: [BN]N donors decrease transparency

2 neutrality
- root phonotactics: free combination [BN], [NB]
- transparency: [BNB]
- suffix invariance [BN] (F/N)

3 transparency: variation
- the context [..BN] is harmonically ambiguous = vacillation & lexical variation

4 suffix invariance
- harmonic vowels do not occur in invariant suffixes
- neutral vowels occur in invariant & alternating suffixes

<table>
<thead>
<tr>
<th>harmonic</th>
<th>neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>invariant (inv)</td>
<td>alternating (alt)</td>
</tr>
<tr>
<td>i</td>
<td>ha-z-i, fald-i</td>
</tr>
<tr>
<td>e</td>
<td>ha-z-e, fald-e</td>
</tr>
<tr>
<td>f</td>
<td>fald-ne-i (ha-z-na)</td>
</tr>
</tbody>
</table>

5 transparency in roots & invariance

6 deriving/motivating the Height Effect
- phonologically irrelevant/performance effect (Vago 1980, Siptár & Törkenczy 1999)
- phonetically grounded: coarticulation (Beck 2005)
- grammatical but arbitrary (constraint ranking/weighting) (Hayes 2006, Siptár et al 2005)
- lexical: the transparency of neutral vowels (vacillation) depends on

7 OLD vs. NEW
- OLD: “familiar” words (high frequency words, nonrecent loans, words of Finno-Ugric origin) do not vacillate
- NEW: recent loans vacillate

8 lexical classes & the Height Effect

<table>
<thead>
<tr>
<th>Lexical classes</th>
<th>high N</th>
<th>non-high N</th>
</tr>
</thead>
<tbody>
<tr>
<td>[BN]j</td>
<td>[Be]j</td>
<td>[Be]</td>
</tr>
</tbody>
</table>

10 a consequence of PHU
- [BN]N is harmonically unambiguous comp. to [BN]N
- ha-z-e-nok, ha-z-i-nok, ha-z-a-nok ...
- assumption: analogical influence of the unambiguous pattern on the more ambiguous one

11 N vowels in multiple suffixed forms

<table>
<thead>
<tr>
<th>N</th>
<th>suffixable suffix</th>
<th>multiply suffixed forms</th>
<th>reliable [BN]N</th>
</tr>
</thead>
<tbody>
<tr>
<td>h()</td>
<td>±</td>
<td>[BN]j</td>
<td>[BN]jF</td>
</tr>
<tr>
<td>e:</td>
<td>±</td>
<td>[BN]jF</td>
<td>[BN]jB</td>
</tr>
</tbody>
</table>
\[
\text{strong reliable pattern suppresses lexical variation (OLD vs NEW class-specific behaviour), but in the absence of such a pattern lexical variation prevails.}
\]

12 possible extension to the Count Effect
- there is no vacillation in the context [BN]N in spite of the Count Effect
- no reliable pattern for [Be] since [BN]jB, [B]jF

13 problems & questions & further research
- Problems with the Count Effect
- This predicts vacillation, as there is nothing to suppress vacillation. BUT: [Be] do not vacillate
- How can vacillation by the Count Effect exist at all for [Bi] roots when the robust reliable pattern is [Bi]B without vacillation (due to PHU)?
- madird-i-nok/mirk
- Quantification, further research

14 references