

INTERPARADIGM CONSERVATISM motivates paradigm gaps in Hungarian

Péter Rebrus (H,E) / Péter Szigetvári (E) / Miklós Törkenczy (E,H)

H = Hungarian Research Centre for Linguistics, E = Eötvös Loránd University rebrus@nytud.hu / szigetvari@elte.hu / tork@nytud.hu

The issue

- ➤ a frequent but lexically conditioned vowel–zero alternation fails to apply to some stems (roml- $\sim romol$ vs. $h\acute{a}ml$ \sim * $h\acute{a}mol$ -)
- This intraparadigmatic lexical conservatism effect blocking repair combined with phonotactics results in paradigm gaps (*hámol-hat, *háml-hat)
- > which cannot be filled by forms based on the relevant cells of other, nondefective paradigms because this violates the requirements of Paradigmatic Support and Interparadigmatic Identity manifesting interparadigmatic conservatism

Sites of potential vowel-zero alternation

- > within the stem (in "epenthetic" stems)
- > suffix initially (in "C/V-initial" suffixes)

Epenthetic verb stems

	C-initial suffix	V-initial suffix
pörög 'twirl'	pörög-ve '-ADV.PCTP'	pö rg -ök '-NDF.1SG'
	pör ö g-het '-рот'	pö rg -ünk '-NDF.1PL'
	pörög-j '-SBJV.NDF.2SG'	pö rg -et '-caus'
	pörög-d '-sbJv.def.2sg'	pö rg -éš '-nomz'

accent marks length, caron marks postalveolars/palatals

Two types of epenthetic verb stem

The types of epointmetic verb sterm						
	C-initial suffix	C/V-initial suffix				
fürd-ik 'bathe-NDF.3SG'	füröd-het '-рот'	$pprox$ füröd-nek \sim fürd-enek '-אסד.зы				
	füröd-j '-sbJV.NDF.2sg'	$pprox$ füröd-s \sim fürd-es '-NDF.2SG'				
pörög 'twirl.NDF.3SG'	pör ö g-het '-рот'	≈ pörög-nek '-NDF.3PL'				
	pörög-j '-SBJV.NDF.2SG'	≈ pörög-s '-NDF.2SG'				

Lexical suffix types (epenthetic stems)

- **C**(-initial) suffixes select VC-final allomorph of epenthetic stems (*füröd-het*, *füröd-ve* '-ADV.PTCP', *füröd-jük* '-DEF.1PL', *füröd-j*, *füröd-d* '-SBJV.DEF.2SG', ...)
- > V(-initial) suffixes select CC-final allomorph of epenthetic stems (fürd-ő '-ACT.PCTP', fürd-éš, fürd-et, fürd-öm '-1SG', fürd-ünk '-NDF.1PL', fürd-ik '-NDF.3SG', fürd-i '-DEF.3SG', ...)
- $ightharpoonup \mathbf{C/V}(\text{-initial}) \text{ suffixes } (-(e)ni \text{ 'INF'}, -(\ddot{o})t\ddot{o}k \text{ 'NDF.2PL'})$
 - > C-initial after VC-final stem allomorph (füröd-nek, füröd-s, füröd-ni, füröd-tök, ...)
 - > V-initial after CC-final stem allomorph (fürd-enek, fürd-es, fürd-eni, fürd-ötök, ...)

Lexical stem classes

- > stable **VC** final: no vowel–zero alternation (ápol-ó, ápol-áš, ápol-ok, ápol-unk, ...)
- > stable **CC** final: no vowel-zero alternation (hord-hat, hord-va, hord-juk, hord-j, ...)
- ➤ "epenthetic": **VC** final with C suffixes, **CC** final with V suffixes
 - > non-IK verbs (no ps.indv.ndf.3sg exponent): only VC stem alternant with C/V suffixes (pörög-ni, *pörg-eni; pörög-tök, *pörg-ötök, ...)
 - **>** IK verbs (PS.INDV.NDF.3SG exponent is -ik): both VC and CC stem alternants with C/V suffixes ($f\ddot{u}r\ddot{o}d$ - $ni \sim f\ddot{u}rd$ -eni, $f\ddot{u}r\ddot{o}d$ - $t\ddot{o}k \sim f\ddot{u}rd$ - $\ddot{o}t\ddot{o}k$, ...)
- defective: CC final with V suffixes (háml-ó, háml-áš, ...) and C/V suffixes (háml-ani, háml-otok, ...), no form with C suffixes (*háml-hat, *háml-va, *háml-juk, *háml-d)

	Base	V suffix	C/V suffix	C suffix
stem class	NDF.3SG	NDF.1SG	NDF.3PL	POT
stable VC	sorol 'list'	sorol-ok	sorol-nak	sorol-hat
epenth. non-IK	torol 'avenge'	to rl -ok	torol-nak	torol-hat
epenth. IK	oml-ik 'collapse'	o ml -ok	oml-anak \sim omol-nak	omol-hat
defective	há ml -ik 'peel'	há ml -ok	há ml -anak	
stable CC	ajá nl 'offer'	ajá nl -ok	ajá nl -anak	ajá nl -hat

Factors determining C/V-suffixed forms

stem type	Base		C/V		С
stable VC	1	⇒	1	\(\begin{align*} 	1
epenthetic non-IK	1	\Rightarrow	1	\(1
epenthetic IK	0	\Rightarrow	0/1	\(1
defective	0	\Rightarrow	0	#	*
stable CC	0	\Rightarrow	0	\(0

1 = VC stem alternant, 0 = CC stem alternant

C/V form must have **Paradigmatic Support** (PARSUP)

- > stem alternant of C/V form is supported iff it occurs in the Base or the C form
- ➤ if the stem alternants of the Base and C form differ (only in epenthetic IK stems), the C/V form systematically vacillates
- ➤ defective stems: no support from C form > no vacillation

Stem classes represented as (generalized) vectors

	_							
	<base< td=""><td> V</td><td>C/V</td><td>C></td><td></td><td></td><td></td><td></td></base<>	V	C/V	C>				
stable VC	<1	1	1	1>	sorol	sorol-ok	sorol-nak	sorol-hat
stable CC	<0	0	0	0>	ajánl	ajá nl -ok	ajá nl -anak	ajá nl -hat
epenthetic non-IK	<1	0	1	1>	torol	to rl -ok	torol-nak	torol-hat
epenthetic IK	<0	0	01	1>	o ml -ik	o ml -ok	oml-anak \sim omol-nak	omol-hat
defective	<0	0	0	*>	há ml -ik	há ml -ok	há ml -anak	_

Overt defectiveness in Hungarian

- involves approximately 70 verb stems ending in Cl or Cz clusters
- \rightarrow no general phonological repair (e.g., rejl- 'hide' + -het 'POT': *rej $\langle e \rangle$ l-het, *rejl- $\langle e \rangle$ het)
- > however speaker-specific stem-internal repairs marginally occur (Lukács et al. 2010, Csényi 2022)

Lexical Conservatism and phonotactics

- Lexical Conservatism effect: defectiveness is (intra)paradigmatically motivated; repair allomorph is unavailable, "unlisted", both for stem: *hámol-va (no hámol-) and for suffix: *háml-ova (no -ova) (Steriade 1999)
- defectiveness is phonotactically motivated: simple concatenation blocked by ban on ClC and CzC clusters (*šikl-hat 'glide-POT', *čukl-j 'hiccup-SBJV.NDF.2SG', *habz-va 'foam-ADV.PCTP', *fehérl-get 'turn_white-FREQ', *patakz-tat 'flow-CAUS')
- Lexical Conservatism driven defectiveness (Pertsova 2005, 2016) can be given both MPARSE (Prince & Smolensky 2004) or CONTROL (Orgun & Sprouse 1999) analysis in OT

Covert defectiveness: pdigm gaps are filled in a conventionalized way

- > (syntactically, e.g., *more/most beautiful,* or) morphologically by forms based on/borrowed from another paradigm, e.g., Swedish /dd/-final verbs (Iverson 1981); suppletivism in Hungarian copulas (Rebrus & Törkenczy 1999)
- > conventionalized morphological repair is not possible in the Hung. verbal paradigm
- > analysis: a potential repair must satisfy
- > Paradigmatic Support (PARSUP), which is violated if the C/V form is unsupported
- ➤ Interparadigm Identity (PARIDENT), which is violated if the content of a cell of the repair paradigm is different from the content of the corresponding cell in the defective paradigm (filling empty cell does not violate PARIDENT); this enforces minimality of repair

Potential repairs for <0 | 0 0 *> that occur marginally

- > <0 | 0 0 0>: violates only phonotactics (%rejl-het, *čukl-hat depends on sonority)
- > <0 | 0 01 1>: violates only Parldent (čukl-anak \sim %čuk< \circ >l-nak, %čuk< \circ >l-hat)

Some potential repairs for <0 | 0 0 *> that do not occur

- ➤ <0 | 0 1 1>: violates PARSUP & PARIDENT, the latter destructively
- > <0 | 01 01 1>: violates Parldent twice
- > <0 | 01 0 1>: violates ParSup & ParIdent
- ➤ <0 | 1 1>: violates PARSUP & PARIDENT twice destructively

Conclusions

- > the effect of PARSUP is interparadigm conservatism: unprecedented paradigm types are not supported (unavailable for repair)
- > the effect of Parident is interparadigm conservatism: difference between potential repair paradigm and existing (defective) paradigm is penalized
- ➤ for some patterns these effects are not accounted for by Lexical Conservatism
- > overabundance and paradigm gaps are related: both follow from PARSUP

References

Csényi, Péter. 2022. Experimental Analysis of Defective Verbs in Hungarian. MA thesis, Eötvös Loránd University, Budapest. ◆ Iverson, Gregory. 1981. Rules, constraints, and paradigmatic lacunae. *Glossa* 15/1: 136–144. ◆ Lukács, Ágnes, Péter Rebrus, and Miklós Törkenczy. 2010. Defective verbal paradigms in Hungarian — description and experimental study. In Matthew Baerman, Greville G. Corbett, Dunstan Brown (eds), *Defective Paradigms: Missing forms and what they tell us.* OUP. 85–102. ◆ Orgun, Cemil Orhan and Ronald Sprouse. 1999. From MParse to Control: deriving ungrammaticality. *Phonology* 16: 191–224. ◆ Pertsova, Katya. 2005. How lexical conservatism can lead to paradigm gaps. *UCLA Working Papers in Linguistics* 11. Los Angeles: UCLA. 13–38. ◆ Pertsova, Katya. 2016. Transderivational relations and paradigm gaps in Russian verbs. *Glossa: a journal of general linguistics* 1(1): 13. ◆ Prince, Alan and Paul Smolensky. 2004. *Optimality Theory: Constraint interaction in generative grammar.* Malden, MA & Oxford: Blackwell. ◆ Steriade, Donca. 1999. Lexical Conservatism. In *Linguistics in the Morning Calm, Selected Papers from SICOL 1997.* Linguistic Society of Korea, Hanshin Publishing House. 157–179. ◆ Rebrus, Péter and Miklós Törkenczy. 1999. Defectivity. Talk delivered to the Budapest Phonology Circle, 28 April.

http://seas.elte.hu/szigetva/papers/m100-interparadigm-poster.pdf