A computational model of phonotactic acquisition Predictability of exceptional patterns in Hungarian

Ildikó Emese Szabó ildi.szabo@nyu.edu

New York University

OCP—Workshop on Variation in Phonology 13th of January, 2016

Word-final vowel length in Hungarian

	Front			Back			
	Rou	inded	Unrc	ounded	Rou	nded	Unrounded
High	у	y:	i	ix	u	uĭ	
Mid	ø	øï			0	OI	
Low			3	er	α		ar

Different phonotactic restrictions for different vowels (Nádasdy and Siptár, 1994; Siptár and Törkenczy, 2000; Törkenczy, 2006; Mády and Reichel, 2007).

- High rounded vowels: have to be long (preferably)
 - Standard Hungarian—Lexical exceptions
 - Budapest Colloquial Hungarian—Free variation
- Mid vowels: have to be long
 - No exceptions
- Low vowels: have to be short
 - Lexical exceptions

Outline

Exceptionality

- Phonotactic exceptionality in previous approaches
- Exceptionality as variation

2 Main claims

3 Contrast Limitation Model

- Theoretical background
- Computational implementation
 - Algorithm
 - Results
- Vacillation
- Lexical exceptions

4 Conclusions

5 Topics of future research

Phonotactic exceptionality: Previous approaches

Mostly treated as uninteresting and random

• Especially phonotactic exceptions

Treatments of other variation

- Rule-based
 - Categorical lexical exceptions (Chomsky and Halle, 1968 et seq.)
 - Variable rules (Labov, 1969; Cedergren and Sankoff, 1974):
 - ★ Never proposed for phonotactics
 - ★ No limitations to factors
- Constraint-based Grammars
 - Lexically-indexed constraints and co-phonologies (Anttila, 2002)
 - Added random variation (like Noisy Harmonic Grammar—Boersma and Pater, pear; Boersma and Weenink, 2010):
 - ★ No connection between the two

Exceptionality: Exceptionality as variation

Two types of variation (Hayes et al., 2009; Rebrus and Törkenczy, 2013, 2015):

• Lexical variation: the appearance of the alternants is linked to specific lexical items.

An example from phonotactics:

[er] is banned word-finally, but

matiné	[mptine:]	\sim *[mptine]	'matinee'
lé	[leː]	\sim *[lɛ]	'juice'
kér-né	[kerner]	\sim *[ke:rnɛ]	'he/she/it would ask for it'

are possible words.

• Vacillation: Several forms are possible for a given word form (even as intraspeaker variation).

An example from phonotactics:

In BCH, supposedly only [y:] is allowed word-finally, but we find both [y] and [y:].

Main claims

- The two types of phonotactic exceptions are conditioned by the same factors (perceivability and functional load of the contrast).
- O The two types of exceptions have distinct configurations.

However:

This model does not predict exact amounts of variations nor definite appearance of exceptions.

Contrast Limitation Model (CLM): Theoretical background

Lexicon (the input of the learner):

• A collection of tokens sorted into word forms Functional load

$$L_{CONTRAST}(A, B) = \frac{N(A;B) + N(B;A)}{N(A) + N(B)}$$

Where A and B are sounds, N(A) is the number of tokens of A, and N(A;B) is the number of tokens of words containing A, but if that A is replaced by B, it would still yield a possible word.

• Significant differences between high, mid and low vowels (light, intermediate and heavy functional load, respectively)—Halácsy et al. (2004).

Perception

• Often-used contrasts are more prominent in perception (Liberman et al., 1957; Studdert-Kennedy et al., 1970)

• Functional load expands the perceptual space (Feldman and Griffiths, 2007) Phonotactic strength

- Non-categorical preference of one member of a pair of sounds in a given environment
- Examples:

CLM: The Algorithm

- Generate the lexicon—two sounds (A and B) with randomly generated set of token based on productional data (F1-, F2-data from Mády and Reichel (2007))
- In-many iterations (here, 5000) in each of which two new tokens are generated: one based on A, one based on B (both with random noise)
 - For each new token point, a *certainty value* is calculated based on:
 - **1** The *distance* of the token from the average of A and of the average of B
 - **2** The functional load of A and B $(In(L_{CONTRAST}))$
 - If this certainty value meets the threshold value t, the token is sorted into either A or B (into the set whose average is closer).
 - If the certainty value of the point is below a threshold value t, the token is sorted into not A or B but set C.
 - After *q*-many iterations, a random element is deleted from each set (forgetting).

CLM: Results I.

\	/owels	Short	Long	Undecided	_
U	(u – uː)	470.44	473.02	8907.46	-
Y	(y – y:)	1511.86	1376.72	6962.42	
I.	(i – i:)	916.2	795.88	8138.8	Set threshold: -3.7
0	(o – o:)	2393.77	2235.68	5230.56	- Set threshold. S.T
OE	$(\phi - \phi:)$	2606.21	2610.99	4648.3	
A	(16 – al)	4951.6	4948.4	0.0	-
Е	$(\epsilon - e_i)$	4939.59	4960.41	0.0	

V	owels	Short	Long	Undecided	_
U	(u – uː)	899.41	898.32	8058.41	-
Υ	(y – y:)	1768.1	1636.13	6447.06	
I	(i – i:)	1167.34	1002.3	7681.32	Set threshold: -4.7
0	(o – o:)	5039.81	4860.19	0.0	- Set threshold. 4.1
OE	(ø – ø:)	4939.42	4960.58	0.0	
A	(ı – aı)	4944.55	4955.45	0.0	-
Е	(ε – eː)	4938.24	4961.76	0.0	

CLM: Results II.

Ildikó Emese Szabó (NYU)

Vacillation

With CLM, there is one consistent generalization for Hungarian:

 $N(undecided_{HIGH}) \ge N(undecided_{MID}) \ge N(undecided_{LOW})$

Conditions of vacillation:

- Light functional load
- Low perceivability
- Can be simulated as categorizational failure

Lexical exceptions

Two cases:

- Low vowels
- High rounded vowels (in Standard Hungarian)

These are cases where

• Salient categories are close to each other

[eː] and [i(ː)] [u] and [uː], [y] and [yː]

- Variant trading for the sake of phonetic consistency (unlabeled input will sometimes be mislabeled to preserve the categories—Blevins and Wedel (2009))
- In this case, the two categories have different phonotactic distributions

As a result, generalizations on the sounds' distributions (phonotactic restrictions) will be less categorical.

Conclusions

In two types of phonotactic exceptions are conditioned by the same factors

- Exceptionality conditioned by phonetics—influenced by distribution: modular approaches cannot be maintained
- In two types of exceptions have distinct configurations
 - Vacillation
 - * Light functional load
 - ★ Low perceivability
 - * Categorizational failure
 - Lexical exceptions
 - * Salient categories close to each other
 - * Different phonotactic distribution
 - * Regular categorizational mistakes (variant trading)

Topics for future research

- Generalizing the algorithm to consonants and to other languages
- Generalizability of the patterns to other areas of phonology
- Phonology vs. phonetics (distribution-sensitive, language-specific perception)
- Vacillation and lexical variation from a diachronic perspective—implicational relationship

Thank you!

References

- Anttila, A. (2002). Morphologically conditioned phonological alternations. *Natural Language & Linguistic Theory*, 20(1):1–42.
- Blevins, J. and Wedel, A. (2009). Inhibited sound change: An evolutionary approach to lexical competition. *Diachronica*, 26(2):143—183.
- Boersma, P. and Pater, J. (to appear). Convergence properties of a gradual learning algorithm for harmonic grammar. In McCarthy, J. and Pater, J., editors, *Harmonic Grammar and Harmonic Serialism*. London: Equinox Press.
- Boersma, P. and Weenink, D. (2010). {P} raat: doing phonetics by computer. Computer program.
- Cedergren, H. J. and Sankoff, D. (1974). Variable rules: Performance as a statistical reflection of competence. Language, 50(2):333–355.
- Chomsky, N. and Halle, M. (1968). The Sound Pattern of English. Harper & Row Publishers, New York.
- Feldman, N. and Griffiths, T. L. (2007). A rational account of the perceptual magnet effect. In Proceedings of the 29th Annual Conference of the Cognitive Science Society.
- Halácsy, P., Kornai, A., Németh, L., Rung, A., Szakadát, I., and Trón, V. (2004). Creating open language resources for hungarian. In Proceedings of Language Resources and Evaluation Conference, pages 203–210.
- Hayes, B., Zuraw, K., Siptár, P., and Cziráky Londe, Z. (2009). Natural and unnatural constraints in hungarian vowel harmony. *Language*, 85:822—-863.
- Labov, W. (1969). Contraction, deletion, and inherent variability of the english copula. Language, 45:715-762.
- Liberman, A. M., Safford Harris, K., Hoffman, H. S., and Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. *Journal of Experimental Psychology*, 54(5):358–68.
- Mády, K. and Reichel, U. D. (2007). Quantity distinction in the hungarian vowel system—just theory or also reality? In *Proceedings of the 15th ICPhS, Saarbrücken*.

References (cont.)

- Nádasdy, A. and Siptár, P. (1994). A magánhangzók. In Ferenc, K., editor, *Strukturális magyar nyelvtan*, volume 2. Fonológia, pages 42–182. Budapest: Akadémiai Kiadó.
- Rebrus, P. and Törkenczy, M. (2015). Monotonicity and the limits of disharmony. In LSA Proceedings of the 2014 Annual Meetings on Phonology. Linguistic Society of America.
- Rebrus, P. and Törkenczy, M. (22nd October 2013). Magánhangzó–diszharmónia (vowel disharmony). In Talk at RIL HAS, Budapest, Hungary.
- Siptár, P. and Törkenczy, M. (2000). The Phonology of Hungarian. The Phonology of the World's languages. Oxford University Press, New York.
- Studdert-Kennedy, M., Liberman, A., Harris, K., and Cooper, F. (1970). Motor theory of speech perception: a reply to lane's critical review. *Psychological Review*, 77:234–249.
- Törkenczy, M. (2006). The Phonotactics of Hungarian. Dsc dissertation, Hungarian Academy of Sciences, Budapest.

Functional load: Cumulative Contrast Load

$$L_{CONTRAST}(A, B) = \frac{N(A;B) + N(B;A)}{N(A) + N(B)}$$

- Token-sensitive: as opposed to type-based
- Observed over possible: not biased by the frequency of the given sound
- Pair-wise comparison: not sensitive to the bias of one member of the sound-pair being more frequent than the other one

Vowels	Cumulative Contrast Load	By percentage
u – uː	0.009191649	0.9192%
y – yı	0.004174471	0.4174%
i – ix	0.003240602	0.3241%
0 – 0ĭ	0.020582427	2.0582%
ø – ø:	0.022096762	2.2097%
р — аг	0.05981946	5.9819%
ε-ei	0.128850935	12.8851%

Data from SzóSzablya Hungarian Webcorpus, Halácsy et al. (2004)