Underspecified tone in Cantonese English

1. Tonal underspecification

Languages with tonal underspecification have an absence of tone (Ø) in their tone systems. While underspecified tone is commonly found in the Bantu tone literature (e.g. Pulleyblank 1986, 2006, Archangeli 1988, 2011, Myers 1998), in addition to works on other languages (e.g. Shih 1987 on Mandarin Chinese, Pierrehumbert and Beckman 1988 on Japanese), no precedent work has investigated underspecified tone in intonational languages spoken by people having a tonal mother tongue. In this talk, I present the case of Cantonese English, the variety of English spoken by native Cantonese speakers in Hong Kong. I argue that Cantonese English has a privative tone system: /H, Ø/, where Ø syllables either receive derived tones or retain their tonal underspecification on the surface. The evidence is based on a smoothing spline analysis of variance (SS ANOVA) (Gu 2002/2013) to the LZ-scored F0 data.

2. Cantonese English

Considering that Cantonese English is the English spoken by Cantonese speakers, it is likely that other than the English lexicon, its grammar and phonology are under the substrate influence of Cantonese. Since stress is not a property found in Cantonese, it is reasonable to not assume stress in Cantonese English. Previous studies (e.g. Wee 2008, Gussenhoven 2012, 2014, Yiu 2014, 2015) have reported some patterns for its use of pitch. I refer to this systematic linguistic use of pitch as tone. The location of the underlying H is lexically specified. All other tones are systematic, but the location of the H is idiosyncratic. In this talk, two crucial points to report on concerning the tonal analysis of Cantonese English are: 1) The combination of predictable and unpredictable gives rise to the underspecification-in-the-input analysis; and 2) the interpolation that gives rise to the underspecification-in-the-output analysis. This combination further leads to the co-existence of tonal specification and underspecification at the output level.

3. What needs to be specified

In any content words, there is an obligatory H which can be linked to multiple syllables. Surrounding the obligatory H are Ø syllables. Here is the SS ANOVA plot of words with a combination of pre-high Ø syllables, obligatory H, and more than one post-high Ø syllables, such as’multinational’. The SS ANOVA splines in the left and right panels represent tone contours of words in the non-utterance-final (in this case utterance-medial) and utterance-final positions respectively. Splines in red, blue, and green represent statements, questions, and context-neutral utterance types in that order.

SS ANOVA results showed that the manifestation of pitch on Ø syllables is sensitive to word boundary, utterance boundary and utterance type. Pre-high Ø syllables surface as M whereas the post-high ones either receives H in non-utterance-final words and L% and a H% at the utterance-final boundary of statements and questions respectively, or stay toneless and receives pitch.
by interpolation for any remaining post-high Ø syllable in utterance-final words. Thus, surface specification and underspecification of Ø syllables can co-exist at the same time.

SS ANOVA results also showed an anticipatory effect of the utterance type (i.e. lowering of LZ-scored F0 on syllables of non-utterance-final words to anticipate the H% for question) on the realisation of all Ø (realizing as H in non-utterance-final words), H, and M. Also, given that H is phonological which always surface as H while Ø syllables surface as M, H or remain toneless by reacting to the boundary and utterance type, this indicates that the anticipatory effect applies to every syllable regardless of their phonological/phonetic status.

4. OT analysis

Two key aspects to be explained are: 1) the coexistence of surface specification and underspecification for tone, and 2) the manifestation of different surface tones on Ø syllables in different word position, utterance position and utterance type. The coexistence of tonal specification and underspecification poses a challenge for a synchronic analysis since constraints usually encourage an all-or-nothing specification for tone, let alone predicting the attested tones for different Ø syllables.

*ØV..] All syllables in non-utterance-final words must be specified.
*Ø.J All syllables in utterance-final words must be specified.

*Ø...H No sequences of Ø before H, regardless of intervening elements.
*H...M No sequences of H followed by M, regardless of intervening elements.

To capture these in an OT analysis, the key markedness constraints ban Ø syllables under certain conditions (e.g. in non-utterance-final words) and disallow certain sequences (e.g. H...M). Interleaving those with faithfulness to input tones from boundary and from utterance type will give us the desired outputs.

5. Conclusions

The privative /H, Ø/ tone system of Cantonese English introduces an interesting case to phonological-typological studies since it shows reflexes of both Cantonese tone and English intonation, resulting in a system that shares similarities with both Bantu tone and Japanese pitch accent. Formalising the explanation of this tone system in OT is a challenging task owing to the coexistence of surface specification and underspecification, plus the manifestation of different surface tones on different Ø syllables. Despite the ‘mixed’ nature of this tone system, the proposed analysis explains it by specifying H in the input, leaving the phonology to specify all others except non-utterance-final post-high Ø syllables in utterance-final words, which remain underspecified and receive pitch by interpolation on the surface. Future studies can further look into the theoretical complications that the co-existence of surface specification and underspecification bears in different tone systems.

Selected references


